

CMC Rogowski current probe for measuring hf bearing currents

PEM has developed a flexible, clip-around, current probe to measure high frequency bearing currents in large motor drives. The probe is a modified version of our industry leading CWT range of Rogowski current sensors. This customised probe features:

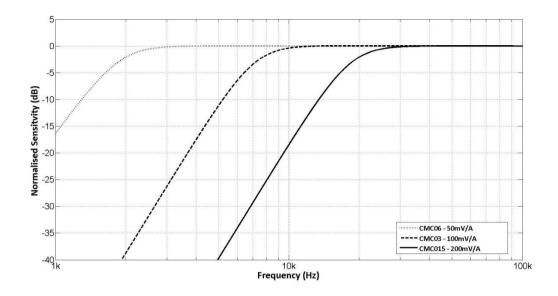
- An electrostatically screened Rogowski coil. The screen attenuates the effects of unwanted interference due to capacitive coupling from local voltages sources.
- A low frequency (-3dB) bandwidth to attenuate any large fundamental power frequency currents. This significantly improves the SNR for measurement of high frequency bearing currents.
- A high frequency (-3dB) bandwidth of \geq 10MHz for coil circumferences up to 1m.
- A wide range of Rogowski coil sizes suitable for even the largest machine shafts.
- Option of two outputs:
 - Optional small 3 ½ digit LCD display showing the true rms of the measured current. This enables a quick, simple diagnostic test for the presence of hf bearing currents.
 - A BNC output enabling the engineer to look at the bearing current waveform and perform full diagnostics with an oscilloscope.

Power Electronic Measurements Ltd Nottingham • UK Tel: +44 (0) 115 946 9657 Fax:+ 44 (0) 115 946 8515 Email: <u>info@pemuk.com</u> www.pemuk.com

Туре	Sensitivity (mV/A)	Peak current BNC output (A)	Rated current LCD Display output	Noise max (mV _{pk-pk})	LF (-3dB) bandwidth f _L typ. (kHz)	LF (<1%) bandwidth typ. (kHz)	HF (-3dB) bandwidth <i>f_H</i> typ. (MHz)
			(A)				Coil length <1000mm
CMC015	200.0	30.0	2.0	15.0	19.0	50.0	10.0
CMC03	100.0	60.0	10.0	10.0	7.0	20.0	10.0
CMC06	50.0	120.0	20.0	10.0	2.0	10.0	12.0

Higher current ranges available on request

BNC OUTPUT	± 6.0V corresponding to 'Peak current'					
LCD DISPLAY	1.999 – for CMC015					
	10.00 – for CMC03					
	19.99 – for CMC06					
CALIBRATION AND	Calibrated to $\pm 0.3\%$ with conductor central in the loop. Supplied with traceable certification					
POSITIONAL ACCURACY	Variation with conductor position in the coil loop typically $\pm 2\%$					
LCD DISPLAY ADDITONAL	Crest factor					
ERRORS	For a waveform with a crest factor <3 there are no additional conversion errors. For a waveform with a crest factor ≥3 an additional reading error must be added					
	Crest Factor Addit	tional Error				
	3 + 0.19	%				
	10 + 1%					
	DC converter, the conv	version error will be <0	0.2% of reading at full sc	ithin the bandwidth of the RMS t ale and 0.4% of reading at 20% f		
	Due to various non-line	version error will be <0	0.2% of reading at full sc			
	Due to various non-line DC converter, the conv	version error will be <0 ors are quantified belo	0.2% of reading at full sc w:			
	Due to various non-line DC converter, the conv scale current. The erro	version error will be <0 ors are quantified belo 20% Peak current	0.2% of reading at full sc w: 100% Peak current			
COIL LENGTHS	Due to various non-line DC converter, the conv scale current. The erro	version error will be <0 ors are quantified belo 20% Peak current +0.2% +0.2%	0.2% of reading at full sc w: 100% Peak current +0.12% +0.04%			
	Due to various non-line DC converter, the conv scale current. The erro Conversion error Non-linearity error	version error will be <0 ors are quantified belo 20% Peak current +0.2% +0.2%	0.2% of reading at full sc w: 100% Peak current +0.12% +0.04% to 10m as custom			
COIL LENGTHS CABLE LENGHTS COIL INSULATION	Due to various non-line DC converter, the conv scale current. The error Conversion error Non-linearity error 330, 500, 700 and 1000	version error will be <0 ors are quantified belo 20% Peak current +0.2% +0.2%	0.2% of reading at full sc w: 100% Peak current +0.12% +0.04% to 10m as custom			
CABLE LENGHTS	Due to various non-line DC converter, the conv scale current. The error Conversion error Non-linearity error 330, 500, 700 and 1000 2.5 and 4m as standard 10kV peak Safe peak working volta	version error will be <0 ors are quantified belo 20% Peak current +0.2% +0.2% 0mm as standard – up d – other cable lengths age to earth. 10kV coils	0.2% of reading at full sc w: 100% Peak current +0.12% +0.04% to 10m as custom s available as custom	rms for 60 seconds with the sleeve		
CABLE LENGHTS	Due to various non-line DC converter, the conv scale current. The error Conversion error Non-linearity error 330, 500, 700 and 1000 2.5 and 4m as standard 10kV peak Safe peak working volta added. Information about	version error will be <0 ors are quantified belo 20% Peak current +0.2% +0.2% 0mm as standard – up d – other cable lengths uge to earth. 10kV coils ut continuous use of the	0.2% of reading at full sc w: 100% Peak current +0.12% +0.04% to 10m as custom s available as custom are flash tested at 15kVr	rms for 60 seconds with the sleeven be obtained from PEM.		
CABLE LENGHTS COIL INSULATION	Due to various non-line DC converter, the conv scale current. The error Conversion error Non-linearity error 330, 500, 700 and 1000 2.5 and 4m as standard 10kV peak Safe peak working volta added. Information about	version error will be <0 prs are quantified belo 20% Peak current +0.2% +0.2% 0mm as standard – up d – other cable lengths up to earth. 10kV coils ut continuous use of the andard alkali batteries	0.2% of reading at full sc w: 100% Peak current +0.12% +0.04% to 10m as custom s available as custom are flash tested at 15kVr e coils at high voltage car s) – lifetime approx. 20h	rms for 60 seconds with the sleeven be obtained from PEM.		


FOR FURTHER DETAILS OF THE GENERAL CWT PERFOMANCE CHARACTERISTICS PLEASE SEE THE FULL TECHNICAL DATASHEET AVAILABLE FROM www.pemuk.com.

Generating the order code

Type + LCD dis	play or BN	Conly + Power	supply / Ca	ble length (m) / Coil	circumference (mm)
e.g. CMC06 – 50m 1000mm circumfe	-	BNC output only	y version, battery	supply, 2.5m c	cable from coil	to integrator,
CMC06		В	/	2.5	/	1000
e.g. CMC 05 – 200 integrator, 2000m CMC015			ersion AND the LC	D display, batt	ery supply, 4n	n cable from coil to 2000

If you have any queries regarding the CMC or require specifications outside our standard ranges please do not hesitate to contact us.

Typical performance characteristics

Fig 1. Bode plot of low frequency bandwidth This is the same for both BNC output and LCD display

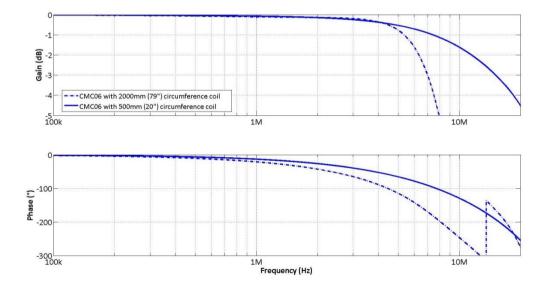


Fig 2. Graph of hf frequency response for a 1000mm coil vs. a 5000mm coil – Model CMC06 50mV/A BNC output only – Showing the variation of hf performance with coil length

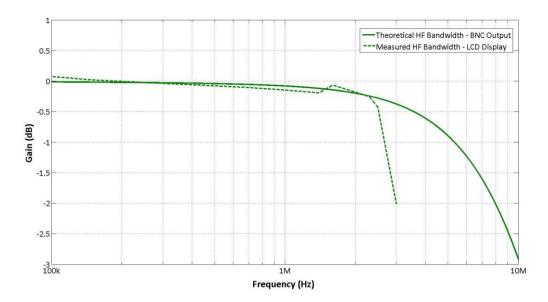


Fig 3. Graph of hf frequency response for a CMC03 with a fixed coil length 1000mm. Compares the BNC output with the hf bandwidth for the output on the LCD display. Current is 20% full scale

The bandwidth on the LCD output is limited by the RMS to DC converter.

Using a precision RMS to DC converter we can offer a 3dB bandwidth of >3.5MHz from 20-100% peak current.

The typical 1%, 10% and -3dB (30%) bandwidth at 100% and 20% full scale is listed in the table below:

Input Current	1% Bandwidth	10% Bandwidth	3dB (30%) Bandwidth
100% Full Scale	400kHz	2.0MHz	4.0MHz
20% Full Scale	200kHz	1.0MHz	3.5MHz

At currents below 20% peak current input the high frequency bandwidth is reduced.